Extended and Unscented Gaussian Processes
نویسندگان
چکیده
We present two new methods for inference in Gaussian process (GP) models with general nonlinear likelihoods. Inference is based on a variational framework where a Gaussian posterior is assumed and the likelihood is linearized about the variational posterior mean using either a Taylor series expansion or statistical linearization. We show that the parameter updates obtained by these algorithms are equivalent to the state update equations in the iterative extended and unscented Kalman filters respectively, hence we refer to our algorithms as extended and unscented GPs. The unscented GP treats the likelihood as a ‘black-box’ by not requiring its derivative for inference, so it also applies to non-differentiable likelihood models. We evaluate the performance of our algorithms on a number of synthetic inversion problems and a binary classification dataset.
منابع مشابه
Extended and Unscented Kitchen Sinks
We propose a scalable multiple-output generalization of unscented and extended Gaussian processes. These algorithms have been designed to handle general likelihood models by linearizing them using a Taylor series or the Unscented Transform in a variational inference framework. We build upon random feature approximations of Gaussian process covariance functions and show that, on small-scale sing...
متن کاملRotated Unscented Kalman Filter for Two State Nonlinear Systems
In the several past years, Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) havebecame basic algorithm for state-variables and parameters estimation of discrete nonlinear systems.The UKF has consistently outperformed for estimation. Sometimes least estimation error doesn't yieldwith UKF for the most nonlinear systems. In this paper, we use a new approach for a two variablestate no...
متن کاملModified Gaussian Sum Filtering Methods for INS/GPS Integration
In INS (Inertial Navigation System) /GPS (Global Positioning System) integration, nonlinear models should be properly handled. The most popular and commonly used method is the Extended Kalman Filter (EKF) which approximates the nonlinear state and measurement equations using the first order Taylor series expansion. On the other hand, recently, some nonlinear filtering methods such as Gaussian S...
متن کاملRobust Non-Coherent Demodulation Scheme for Bluetooth Voice Transmission Using Linear, Extended, and Unscented Kalman Filtering
This paper presents a novel and cost effective method to be used in the optimization of the Gaussian Frequency Shift Keying (GFSK) at the receiver of the Bluetooth communication system. The proposed method enhances the performance of the noncoherent demodulation schemes by improving the Bit Error Rate (BER) and Frame Error Rate (FER) outcomes. Linear, Extended, and Unscented Kalman Filters are ...
متن کاملContinuous-Discrete Unscented Kalman Filtering
The unscented Kalman filter (UKF) is formulated for the continuous-discrete state space model. The exact moment equations are solved approximately by using the unscented transform (UT) and the measurement update is obtained by computing the normal correlation, again using the UT. In contrast to the usual treatment, the system and measurement noise sequences are included from the start and are n...
متن کامل